Integrating Safety and Automation

Presented by: Dennis Aulbrook
A safeguard is a solution or a combination of solutions that eliminate or reduce the risk of exposure to hazardous moving parts and other hazards.

Appropriate safeguards must be integrated into the machinery/automation system to mitigate the hazard(s).

The criteria for selecting proper techniques & safeguarding will be discussed today.

Common cause failures of automation systems and why you must protect against those failures will also be discussed.
Hierarchy of Safeguards

1. Design out the hazard(s)
2. Fixed barrier guarding
3. Safeguarding Devices/Energy Control
4. Awareness Means, Training, Procedures, Safe Location (Admin.)
5. Personal Protective Equipment

Most effective risk reduction

Least effective risk reduction
Safeguarding topics covered today

- Barrier Guarding
- Safeguarding Devices
- Energy Control

- But first a short review of the regulations; risk assessments and safety circuits
What guidelines are there for designing a safety system?

Mandatory (Law)
- Federal - Occupational Safety & Health Administration (OSHA)
- State - Occupational Safety & Health Administration (XXOSHA)

Consensus Standards (Voluntary)
- American National Standards Institute (ANSI)
- National Fire Protection Agency (NFPA)
- Canadian Standards Association (CSA)
- European Norm (EN)
- International Electro technical Commission (IEC)
- International Organization for Standardization (ISO)
Risk Assessments to determine appropriate safeguarding

Risk Assessment flow chart as per ISO 12100

Hazard identification and risk evaluation are done first. Then follow-thru steps are taken to determine that the risk has been reduced to the acceptable level.

Note: ISO 12100 replaced ISO 14121 in 2012 and is referenced in ANSI (i.e. Robot Safety Standard) and other ISO standards (i.e. ISO 13849 Safety of Machinery)
How do I determine the level of safeguarding required?

Safety Performance Levels (PLr) according to ISO 13849

Severity of injury (S); Frequency of exposure (F) and Possibility to avoid (P) drive the Performance Level (PLr) of overall safeguarding required to reduce the risk(s)

Key
1. starting point for evaluation of safety function’s contribution to risk reduction
L. low contribution to risk reduction
H. high contribution to risk reduction
PLr. required performance level

Risk parameters:
S. severity of injury
S1. slight (normally reversible injury)
S2. serious (normally irreversible injury or death)
F. frequency and/or exposure to hazard
F1. seldom-to-less-often and/or exposure time is short
F2. frequent-to-continuous and/or exposure time is long
P. possibility of avoiding hazard or limiting harm
P1. possible under specific conditions
P2. scarcely possible
What is Control Reliability?

- **Cardinal Rule:** No single failure will cause the loss of safety!
- Control Reliable circuits are designed with redundancy and monitoring
- PLd - monitoring can be done each machine cycle and is fault tolerant; where PLe employs continuous monitoring and is not fault tolerant. PLe must also have a “diversity” of components.
- Control reliability is required in OSHA 1910.217 as well as many ANSI, NFPA, CSA, EN and ISO standards.
- Control reliable is not the same as “fail-safe”. Fail-Safe simply means that a circuit should fail to its safe state.
Fixed barrier guards are the first choice to keep workers from contacting hazardous moving parts or to contain harmful fluids and projectiles, particularly when access is not normally required during operation.

Properly designed and installed barrier guards provide the most effective protection to workers.
Fixed barrier guards **must**:
- Prevent access to the danger area from all directions (AUTO: Around, Under, Through, Over)
- Not create additional pinch points or other hazards
- Withstand operational forces
- Safely contain broken parts; projectiles; hazardous fluids etc.
- Be secured by at least one fastener requiring an uncommon tool for removal, *unless properly interlocked with the machine control system.*
Fixed barrier guards must also:
• Offer good visibility when possible
• Stand up to normal wear and tear
• Meet normal production and quality needs
• Be difficult to modify or defeat
• Allow for safe lubrication and/or minor adjustments
• Meet or exceed federal/state and industry consensus requirements:
 United States = OSHA/ANSI B11;
 Canada = CSA;
 International = ISO
Barrier Guarding

Maximum permissible openings

<table>
<thead>
<tr>
<th>Fingertip</th>
<th>Finger</th>
<th>Hand to Ball of Thumb</th>
<th>Arm to Armpit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Size Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a is between 4 and 8 mm</td>
<td>b must be at least 15 mm ($\frac{\text{a}}{2}$ in).</td>
</tr>
<tr>
<td>If a is between 8 and 12 mm</td>
<td>b must be at least 80 mm ($\frac{\text{a}}{2}$ in). If a is between 12 and 20 mm ($\frac{\text{a}}{2}$ and $\frac{\text{a}}{4}$ in), then b must be at least 120 mm ($\frac{\text{a}}{4}$ in).</td>
</tr>
<tr>
<td>If a is between 20 and 30 mm</td>
<td>b must be at least 200 mm ($\frac{\text{a}}{4}$ in).</td>
</tr>
<tr>
<td>If a is between 30 and 150 mm</td>
<td>b must be at least 850 mm ($\frac{\text{a}}{4}$ in).</td>
</tr>
</tbody>
</table>

a – vertical dimension of the guard opening
b – distance from the nearest danger point inside the guard

Relationship between size of opening in a grid guard and distance to the danger point. Note: check all applicable federal, state, international & consensus requirements.
Perimeter guarding (fence) or rail enclosure can be used to effectively protect a worker from contacting hazards.

Where possible, a perimeter fence or rail enclosure should be at least 1.8 meters (6 feet) high. If this is not practicable, the reach distance from the guardrail or perimeter fence to the danger point must be in accordance with federal & industry consensus standards.

Minimum perimeter guarding height (in most standards) is 1000mm (40”) to restrict body movement.

Maximum sweep height (bottom opening) is 150mm (6”).

Reach distances to hazard(s)

Factors to consider in designing perimeter Guarding: A = height of the danger zone, B = height of the protective barrier, C = horizontal distance to the danger zone.

Note: check all applicable federal, state, international & consensus requirements.
If access to a point of operation is required during normal operation, a movable openable barrier guard interlocked with the machine’s power source (control or primary) can be used.

The interlock (and safety circuit) ensures that the machine will not operate if the guard is in the open position.

If the interlocked guard can be opened during operation causing the machine to stop, this type of interlock is called “non-locking”.

Interlocks “Non-Locking”
Some interlock switches also have a locking device that locks the guard door closed and will not release it until the machine comes to a safe stop.

They are typically used with machinery where the coasting down time may take several seconds to several minutes.

This type of interlock is also referred to as power interlocking and can be configured for power-to-lock or power-to-unlock.

Generally, a “Request-To-Enter” (RTE) operator station is required to stop the machine before the interlock unlocks.

Zero speed indication can be accomplished with time, encoders or back EMF; depending on risk.
Most interlock switches are intended for use in production processes. They may not have the integrity and reliability required for worker safety.

When a risk assessment indicates a high level of risk, there will be a need to monitor the integrity of the safety interlock circuit (control reliability). In addition, the use of redundant interlock(s) will be required.

When a locking switch is used on a gate with full-body access; an emergency release and a lock-open device must be installed.

Interlock switches should be tamper-resistant and difficult to defeat or bypass.

Many other technical factors affect the proper selection and positioning of safety interlocks.
Trapped key systems (also known as Captive key systems) use a series of keys and locks to start or shut down a hazardous operation in a prescribed and safe sequence.

These devices are mechanical only (no electricity) which makes them appropriate for pneumatically operated machinery or where intrinsically safe circuits are required.
Safeguarding Devices

Two-Hand controls

- Two-hand controls, where both controls (buttons, levers, sensors) must be activated at the same time and kept engaged throughout the entire hazardous portion of the machine cycle. If the controls are released, the machine either stops or returns to top of stroke (the position that opens the dies). This type of machine operation is called part revolution clutch or friction clutch. It is commonly found with pneumatic clutches/brakes and with hydraulically powered machinery such as press brakes.

- Two-hand trips, where both controls must be activated at the same time to initiate the machine cycle but releasing the controls will not interrupt the machine cycle. This type of machine operation is called full revolution clutch or mechanical clutch.
Unlike barrier guards and two-hand controls, presence-sensing devices do not prevent access to a hazardous point of operation. However, they prevent dangerous machine motion if any part of a worker’s body is in the danger area when a machine cycle is initiated. They are a good choice of safeguard when frequent access is required for loading parts and making adjustments during normal operation and physical guarding is too restrictive. These safety devices prevent dangerous motion while permitting unrestricted access by sensing the presence of the operator and sending a stop signal. Examples include light curtains, laser scanners, IR or laser light beams etc.
Safety bumpers and safety mats are “pressure sensitive” and cause a short circuit across the electrical contacts when they encounter resistance (typically 60 lbs. for mats).

Safety mats are typically used to guard the floor area around a machine. They must be a min. of 48” deep and should not be used as an “enabling” device.

Safety bumpers are typically used on power operated doors.

These devices are available in control reliable (4-wire) and non-control reliable configurations (2-wire). Be sure to select the appropriate protection based on a risk assessment.
Standard PLC’s (Programmable Logic Controllers) are not considered a safety device and should not be used as such.

Safety controllers (programmable and non-programmable) are the “brains” of the safety system. They are control reliable safety rated devices with dual channel inputs that employ continuous self-checking and are capable of open circuit detection; short-circuit detection and ground fault detection. Monitoring and error checking of peripheral safety input & output devices
An Emergency Stop (E-Stop) device is a safety mechanism used to shut off a device or machine in an emergency situation. It can be a pushbutton, pull-rope, push bar, or other device that brings about immediate stoppage of the machine when activated.

There is debate as to whether or not an emergency stop is a “safeguarding” device because it is normally used “after-the-fact”

According to NFPA, ANSI, CSA & ISO, emergency stop devices should be control reliable in high risk areas.
Common cause failures of automation systems

Energy sources that must be consider & mitigated

- Electrical
- Hydraulic
- Pneumatic
- Mechanical/Gravity
- All other energy sources as listed in ISO 12100 Risk Assessment. Such as Kinetic, Chemical, Thermal, Radiation etc.
Energy Control

What could go wrong?

- Any failure in the hydraulic, pneumatic or mechanical system can cause hazardous movement.

- Some failures modes are: Valve Spool Sticking; Short Circuit / Open Circuit on Solenoid; Broken Hose or Fitting; Mechanical Failure; Cylinder O-Ring Failure / Valve Seal Failure. Any of which can cause machine movement and/or vertical cylinders to fall.

- Possible causes of these failure are: System Contamination / Lack of Filtration; Over Pressure; Over Temperature; Lack of Maintenance; Wrong Components; Fastener failures; Poor Design (wrong size, wrong type, hose length incorrect); Fatigue etc.
Pneumatic Failure: Real Life

OSHA Accident: 202655346 - Technician Sustains Amputations When Machine Actuates
Employee #1 was working as a lead setup man and technician for a firm that manufactured plastic food containers. There were problems with an Irwin thermoplastic-forming machine . . . Employee #1 turned the electric power off first and opened the door to the machine. At this time, the top mold was held and controlled pneumatically in the 'top' position. As he reached into the machine to look for the problem, the top mold, or plunger, unexpectedly came down. It pinned his right hand against a westerly rail in proximity to the bottom mold. He sustained crushing injuries of his right hand, which resulted in the amputation of the fingertips . . . the Division determined that the pneumatically controlled top mold of the forming machine had been coming down by itself unexpectedly in the past, regardless of whether the machine door was in the 'closed' or 'open' position.
3-Way pneumatic valve review

2 Position Valve, 3 Ports
P – Pressure
E – Exhaust
A – Port to Cylinder

When Solenoid is NOT Energized, P-Port is blocked and A-Port is routed to Exhaust Port-E
Energy Control

3-Way pneumatic valve review

2 Position Valve, 3 Ports
P – Pressure
E – Exhaust
A – Port to Cylinder

When Solenoid is Energized, P-Port is routed to A-Port and Exhaust Port-E is blocked
Safety Function: When the electrical command signals are removed, the valve exhausts air from the hazardous cylinder or actuator of the machine.

Faults to Consider: • Valve stuck in actuated position. • Pilot seal failure – Can lead to unexpected valve element movement • Pilot section manual actuator seal failure - Can lead to unexpected valve element movement • Valve element not actuating or de-actuating properly due to fluid contamination or internal wear. • Broken components (piston, poppet, spring) within a valve element could cause valve to shift unexpectedly or not shift.

Fault Exclusion: None

Note: There is no “monitoring” of the components by the control system.
The “monitoring” function checks the Safety Input Device and also the pneumatic valve (via LS1).

This pneumatic circuit is not “control reliable” because there is no valve redundancy to prevent a single valve failure that could cause the loss of safety.
Air and Hydraulic Cylinders:
A Pilot Operated (PO) Check Valve would engage once the pressure source is isolated. This would hold the cylinder in a suspended state. If the seals are bad, the cylinder would drift. A second PO check valve on the cap end of the cylinder would resolve a leakage problem. Counter-balance valves can accomplish the same goals.

Other Benefits:
The cylinder would remain stationary on the loss of voltage, loss of air pressure or decoupled hose(s), if the PO check(s) were installed directly into the cylinder ports.
Energy Control

Vertical Load Holding – Mechanical

Manual Die Blocks, use of administrative controls required.

Ratchet Style Mechanical Safety monitored by safety system

Rod Locks monitored by safety system
Questions?

If you have questions; would like a copy of this presentation or would like to schedule a live demonstration at your facility, please contact dennis.aulbrook@asesafety.com or call 810-417-0220

Thank you!!